organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hoong-Kun Fun,^a* Shu-Feng Zhang,^b Zhen-Feng Chen,^b Hong Liang^b and Suchada Chantrapromma^c*

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, and ^cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Correspondence e-mail: hkfun@usm.my, suchada.c@psu.ac.th

Key indicators

Single-crystal X-ray study T = 297 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.050 wR factor = 0.159 Data-to-parameter ratio = 20.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved

N-(6-Chloropyridazin-3-yl)-4-methylbenzenesulfonamide

In the title compound, $C_{11}H_{10}ClN_3O_2S$, the pyridazine ring and the benzene ring adopt a distorted V configuration, forming a dihedral angle of 73.79 (11)°. The crystal packing is stabilized by intermolecular N-H···O hydrogen bonds. Weak intramolecular C-H···O and intermolecular C-H···O and C-H···N interactions are also observed. The molecules are linked into one-dimensional chains along the *c* axis and these chains are interconnected, forming a twodimensional network.

Comment

N-(6-Chloro-3-pyridazinyl)-4-methylbenzenesulfonamide, (I), is a synthetic antibacterial drug of the sulfanilamide family (Ciba Ltd, 1961). A number of sufanilamide drugs have been crystallographically characterized in recent decades (Acharya *et al.*, 1982; Adsmond & Grant, 2001; Basak *et al.*, 1983; Caira & Mohamed, 1992; Deo *et al.*, 1980; Joshi *et al.*, 1983). Some of them, *viz.* sulfamerazine and sulfamethazine, have been studied several times (Acharya *et al.*, 1982; Adsmond & Grant, 2001; Basak *et al.*, 1983; Caira *et al.*, 1982; Adsmond & Grant, 2001; Basak *et al.*, 1983; Caira *et al.*, 1992; Deo *et al.*, 1980). Recently, we reported the crystal structure of sulfachloropyridazine (Tan *et al.*, 2005) and we report here the structure of the title compound, (I), a chloropyridazine sulfonamide derivative.

Bond lengths and angles in (I) (Table 1) are in normal ranges (Allen *et al.*, 1987) and agree with the corresponding values found in sulfamerazine and sulfamethazine (Acharya *et al.*, 1982; Adsmond & Grant, 2001; Basak *et al.*, 1983; Caira *et al.*, 1992; Deo *et al.*, 1980; Tan *et al.*, 2005). S–C is a single bond (Tan *et al.*, 2005), but shorter than those found in the metal sulfadiazinate complexes [1.746 (4) or 1.768 (5) Å; Garcia-Raso *et al.*, 1997; Yuan *et al.*, 2001]; it therefore appears that there is no extension of the benzene-ring electron delocalization to the S atom. The S–O bond lengths are very similar and comparable to those found in free sulfadiazine (Joshi *et al.*, 1983) and sulfachloropyridazine (Tan *et al.*, 2005).

Received 27 April 2006 Accepted 28 April 2006

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bonds are shown as dashed lines.

Figure 2

The crystal packing of (I), viewed down the b axis. Hydrogen bonds are shown as dashed lines.

The heterocyclic ring geometry in (I) is comparable to that found for free pyridazine (Blake & Rankin, 1991). The pyridazine and benzene rings form a distorted V configuration indicated by the torsion angle C5-S1-N1-C1 of $54.74 (18)^{\circ}$; the dihedral angle between these two rings is $73.79 (11)^{\circ}$, which is smaller than in sulfachloropyridazine [82.86 (6)°; Tan et al., 2005].

Weak intramolecular $C2-H2A\cdots O1$ C10 and H10A···O1 interactions (Table 2) generate $R_2^1(6)$ and $R_2^1(5)$ motifs, respectively (Bernstein, et al., 1995). The intermolecular hydrogen bond N1-H1N1···O1(x, 1 + y, z), involves the sulfonamide NH group and sulfonamide O atom. Molecules are linked into one-dimensional chains along the c

axis through weak $C-H \cdots O$ interactions (Fig. 2 and Table 2). These chains are linked together through further weak C- $H \cdots O$ interactions (Table 2), forming a two-dimensional network. A C-H··· π interaction is also observed (Table 2, Cg is the centroid of the benzene ring).

Experimental

N-(6-Chloropyridazin-3-yl)-4-methylbenzenesulfonamide (0.2 mmol) and Zn(CH₃COO)₂ (0.5 mmol) were placed in a Pyrex tube. After addition of EtOH (1.0 ml) and H₂O (0.5 ml), the tube was frozen with liquid N₂, evacuated and sealed with a torch. The tube was heated at 343 K for 1 d to give light-yellow rod-shaped crystals of (I) in a 46% yield.

Crystal data

C

Z = 8
$D_x = 1.563 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
$\mu = 0.49 \text{ mm}^{-1}$
T = 297 (2) K
Rod, light yellow
$0.50 \times 0.33 \times 0.27 \text{ mm}$

Data collection

```
Bruker SMART APEX2 CCD area-
  detector diffractometer
\omega scans
Absorption correction: multi-scan
  (SADABS; Bruker, 2005)
  T_{\min} = 0.792, T_{\max} = 0.881
```

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.159$ S = 1.053507 reflections 168 parameters H atoms treated by a mixture of independent and constrained refinement

$w = 1/[\sigma^2(F_0^2) + (0.0966P)^2]$ + 1.8315P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$

19119 measured reflections

 $R_{\rm int} = 0.027$

 $\theta_{\rm max} = 30.0^{\circ}$

3507 independent reflections 2965 reflections with $I > 2\sigma(I)$

Table 1 Selected geometric parameters (Å, °).

S1-O1	1.4258 (17)	N1-C1	1.406 (2)
S1-O2	1.4345 (15)	N2-C1	1.317 (3)
S1-N1	1.6592 (18)	N2-N3	1.341 (3)
S1-C5	1.7373 (19)	N3-C4	1.304 (3)
Cl1-C4	1.731 (2)		
O1-S1-O2	118.62 (10)	O2-S1-C5	109.91 (10)
O1-S1-N1	108.07 (10)	N1-S1-C5	106.41 (9)
O2-S1-N1	104.04 (10)	C1-N1-S1	122.74 (13)
O1-S1-C5	109.04 (10)		
O1-S1-N1-C1	-62.25(19)	N1-S1-C5-C10	-105.64 (16)
O2-S1-N1-C1	170.81 (17)	O1-S1-C5-C6	-170.73 (14)
C5-S1-N1-C1	54.74 (18)	O2-S1-C5-C6	-39.13 (18)
\$1-N1-C1-C2	42.5 (3)	N1-S1-C5-C6	72.93 (16)

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$N1-H1N1\cdotsO1^{i}$	0.98 (3)	2.44 (3)	3.336 (2)	153 (2)	
$C2-H2A\cdots O1$	0.93	2.48	3.086 (3)	123	
$C2-H2A\cdots N2^{ii}$	0.93	2.41	3.264 (2)	152	
C10−H10A···O1	0.93	2.57	2.929 (3)	104	
$C11-H11A\cdots O1^{iii}$	0.96	2.46	3.370 (3)	158	
$C11-H11C\cdots O2^{iv}$	0.96	2.48	3.109 (3)	123	
$C7-H7A\cdots Cg1^{v}$	0.93	2.81	3.467 (2)	128	

Symmetry codes: (i) x, y + 1, z; (ii) x, y - 1, z; (iii) $x, -y, z - \frac{1}{2}$; (iv) $x, -y + 1, z - \frac{1}{2}$; (v) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; *Cg* is the centroid of the benzene ring.

The H atom bound to atom N1 was located in a difference Fourier map and refined isotropically. The remainding H atoms were placed in calculated positions, with C–H distances in the range 0.93–0.98 Å. The $U_{\rm iso}$ values were constrained to be $1.5U_{\rm eq}$ of the carrier atom for methyl H atoms and $1.2U_{\rm eq}$ for the remaining H atoms.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

The National Natural Science Foundation of China (contract/grant Nos. 20361002 and 30460153) is thanked for its support. The authors also thank the Malaysian Government

and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/ A118.

References

- Acharya, K. R., Kuchela, K. & Kartha, G. (1982). J. Cryst. Spectro. Res. 12, 369–376.
- Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Basak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1983). Acta Cryst. C39, 492–494.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Blake, A. J. & Rankin, D. W. H. (1991). Acta Cryst. C47, 1933–1936.
- Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Caira, M. R. & Mohamed, R. (1992). Acta Cryst. B48, 492-498.
- Ciba Ltd (1961). Br. Patent No. 884827.
- Deo, N., Tiwari, R. K. & Singh, T. P. (1980). J. Sci. Res. (Bhopal, India), 2, 137– 139.
- Garcia-Raso, A., Fiol, J. J., Martorell, G., Lopez-Zafra, A. & Quiros, M. (1997). Polyhedron, 16, 613–621.
- Joshi, V. V., Tiwari, R. K., Patel, T. C. & Singh, T. P. (1983). *India J. Phys. A*, 57, 79–89.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tan, Y.-S., Chen, Z.-F., Liang, H. & Zhang, Y. (2005). Acta Cryst. E61, o1842– o1844.
- Yuan, R.-X., Xiong, R.-G., Chen, Z.-F., Zhang, P., Ju, H.-X., Dai, Z., Guo, Z.-J., Fun, H.-K. & You, X.-Z. (2001). J. Chem. Soc. Dalton Trans. pp. 774–776.